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Abstract—Reducing operational costs and increasing energy
efficiency are critical for mobile operators. One accepted way
to tackle these issues is to make use of virtualization to share
the same physical infrastructure among several virtual networks.
However, sharing physical infrastructure presents a number of
challenges, such as security issues, conflicting hardware control,
and fair resource sharing. In our earlier work, we analyzed these
challenges and demonstrated how virtualized mobile operator
networks can address them. However, to create and manage
virtual mobile networks, an automated configuration system is
required. This system must incorporate the diverse nature of
technology, ownership, and geographic domains into an over-
arching single virtual network. This paper discusses the main
challenges in creating such an architecture. We then present
our proposed architecture and describe how it meets these
challenges. To conclude, we present our experiences in the real-
world implementation of this architecture.

I. INTRODUCTION

Mobile networks have become ubiquitous. This, together
with unlimited data flat-rate contracts, has ensured an ever
increasing access to varied Internet content over the mobile
networks. On the one hand, this move has made mobile net-
works an integral part of our everyday lives; on the other hand,
it has put a strain on the mobile operator resources that was
previously unseen. One solution is to update the technology
of the mobile networks to provide higher bandwidth to their
users. This, though, is a very expensive affair. In such a
situation, an alternative is to deploy an infrastructure where
multiple generations of mobile network can coexist [1]. This
network sharing solution presents many challenges, such as
how to ensure traffic isolation, security, dynamic sharing,
and monitoring. All of these challenges were presented in
our earlier work [2]. Therein we also looked at network
virtualization as a possible solution to address them. Creating
and managing such virtual networks requires the existence
of an automated network management system. We call this
system the Network Configuration Platform (NCP). This paper
presents the challenges in the design of such an automated
architecture, the architecture itself, and our implementation
of the NCP. The next section looks some related work fol-
lowed by the challenges in designing the NCP in Section III.
Thereafter, in Section IV we present our architecture of the
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NCP and address how this architecture helps in meeting those
challenges. In Section V we present our implementation of
this architecture as a proof of concept.

II. RELATED WORK

Over the last five years significant research effort has fo-
cused on building virtual networks over the same physical in-
frastructure. The reader is referred to the recent survey [3] [4]
and projects GENI, G-Lab and 4WARD for an introduction.
GENI[5] is an NSF-funded research project that provides the
academia and the industry with a geographically distributed
virtual testbed for at-scale networking experimentation. G-
Lab[6] is a Germany-wide research project that fosters ex-
perimentally driven research on future internet technologies.
4WARD[7] is an EU funded project including partners from
industry and academia that focus on improving the man-
agement, coexistence, and inter-operability between several
network architectures.

To the best of our knowledge, so far, there is no network ar-
chitecture based on virtualization technologies that fully covers
an end-to-end provisioning of virtualized network resources
across heterogeneous domains.

III. CHALLENGES

Three distinct business entities can be identified in the pro-
posed architecture: the Physical Infrastructure Owner (PIO),
the Virtual Network as a Service Provider (VNaaSP) and
the Virtual Network Operator (VNO). The PIO is the entity
that deploys and owns the physical infrastructure resources.
The VNaaSP is the brokering entity that interacts with one
or several PIOs to deploy virtual networks based on the
requirements specified by the VNO, the VNaaS consumer.
These virtual networks can extend across multiple PIOs. Note
that PIOs are not necessarily separate business entities, they
may also be separated administratively, geographically, or
even by the underlying technology. VNaaSPs may also peer
with other VNaaSPs to create virtual networks. The business
entities we present are flexible. The same business entity may
act as the VNaaSP and the PIO, or for that matter all three,
as is the case with mobile operators.

The basic interaction between the business entities to create
a virtual network starts with the NCP receiving a request
for a virtual network from a VNO. This request specifies



requirements as well as constraints that the VNO may impose
on the virtual network. The NCP understands this request and
finds out the most efficient way to create this virtual network
over the physical resources it owns or has interfaces to. It
must then issue requests to the PIO to create this network. In
case the requested virtual network spans multiple PIOs, the
request must be split accordingly into sub-requests to create a
complete virtual network.

This generalized business model implies several challenges
that need to be tackled. The following subsections look at each
of these challenges in more detail.

A. Resource Description Language (RDL)

The RDL serves as a mean of communication between
the VNO and the NCP: the requesting entity can specify the
requirements of the virtual network in terms of parameters
such as network topology, bandwidth, latency to the users,
needed processing power and so on. The requirements may
include virtualization technology and software / hardware
requests. Due to the flexible nature and possible evolution
in requirements and architectures, the RDL must be easily
extensible. A less intuitive requirement affecting all actors
in their economic benefits is the possibility to omit precise
specification while at the same time describing real world
scenarios. Not only may an RDL ignoring this constraint easily
become too bulky to use, it is also likely to force service
operators to focus on details they are not interested in. The
imprecise nature of the RDL gives the NCP flexibility for a
more efficient realization. It can also be used to communicate
resource requirements across providers in case of inter-PIO
virtual networks.

Many architectures require RDLs to describe and com-
municate network requirements, services, and embeddings.
PlanetLab[8] uses the Resource Specification (RSpec) lan-
guage to communicate network requirements between various
actors. RSpec is specified under the ProtoGENI project and
is a basic RDL tailored to describe virtual network slices. It
supports the advertisement and request of resources. RSpec
can be used to describe nodes and links, the interaction
between them, and even the services hosted on the nodes.
The Open Cloud Computing Interface (OCCI) was originally
specified by the Open Grid Forum (OGF) as an API for
services based on the infrastructure-as-a-service model. It has
since undergone many extensions to serve services based
on platform-as-a-service and system-as-a-service models. The
Network Description Language (NDL)[9] models computer
networks and it makes use of the Resource Description Frame-
work (RDF) for this purpose. NDL has an special focus on
optical networking, facilitating the provisioning of lightpaths
across multiple domains.

There are many RDLs available that fulfill specific needs
to describe virtual networks and services. The main challenge
facing the RDL is that it needs to be globally standardized to
facilitate communication across the various business entities.

B. Isolation

Network isolation refers to guaranteeing complete sepa-
ration between the various virtual networks over the same
physical network. This means that overuse of resources in
one virtual network must not affect the service quality in
the other. Complete isolation is difficult to achieve. In the
case of virtual mobile networks, all their different parts need
to be connected with no breaks in the isolation along the
end-to-end virtual network. The different isolation techniques
for virtualization of the various infrastructure domains of
the mobile network may occur at different network layers.
Therefore, when a packet crosses infrastructure boundaries
it may need to be re-classified. This re-classifier needs to
look at all packets, thereby, breaking isolation. Technologies
which combine different network layers, such as GMPLS or
OpenFlow, can help in achieving this isolation.

C. Cross-domain Embedding

An additional challenge that arises with embedding a mobile
operator network is the need to embed the virtual network
across multiple technology domains. This implies that the
NCP must interact with the operation and management (O&M)
planes of each of the different technical domains. It must be
able to inquire about resource availability, add or delete virtual
resources, configure and re-configure them, and monitor their
performance.

The question of where to embed or realize which compo-
nents of the virtual network is one of the most intensively
discussed problems in the network virtualization community.
Due to the computational complexity, many heuristics have
been proposed on how to reconfigure networks [10] [11],
to embed virtual networks with simulated annealing tech-
niques [12], or compute good solutions in special graphs [13].
Many approaches in the literature embed virtual nodes and
virtual links separately [14], which entails a loss of efficiency.
Virtual network embeddings have also been studied for cross-
provider settings [15] and also from a distributed computing
point-of-view [16].

All these algorithms assume complete knowledge of the
physical infrastructure. In our case, the PIOs may hide the
exact topological information or want to optimize embedding
based on different parameters from the NCP, rendering these
algorithms useless. As we shall see later, our architecture
design solves this issue by introducing a hierarchical design
to the NCP, thereby, enabling all the previous research to still
be used.

D. Monitoring

The performance of each virtual entity needs to be mon-
itored after its creation by the NCP. The adherence to the
service level agreements that the NCP has guaranteed to
the service operator needs to be ensured. Furthermore, the
results of this monitoring, such as bandwidth logs, need to be
reported to the service operator. Lastly, monitoring needs to
detect service failures and over-load and perform appropriate
actions, like service migration, to rectify them. Besides the



virtual network, the physical network, and its geographical
environment need to be monitored. Failure of physical ma-
chines and or links should be dynamically rectified and hidden
from the service operator and the users. If this is not possi-
ble, appropriate notifications to the operator must be issued.
Furthermore, the geographical triggers need to be monitored
for possible disaster scenarios. With the sudden increase in
demand that accompanies a disaster, essential services, such as
voice calls, SMS, and e-mails should be dynamically assigned
more network resources and non-essential services, such as
video streaming, restricted.
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Fig. 1: Architecture: the big picture.

IV. ARCHITECTURE: THE HIERARCHICAL NCP

Based on the challenges presented above, Figure 1 shows
an overview architecture of the system showing the NCP as
a black box. The main detail of the architecture is that it
focuses by design on keeping NCP as a black-box that receives
the virtual network resource specification and outputs split
resource specifications for the underlying PIOs and peer NCPs.
This black box approach implies the NCPs can be stacked on
top, or next to each other as peers, to mirror multiple layers of
business, technical and administrative entities each having its
own NCP. At the lowest level, each PIO also has what we call
an NCP agent. The job of this agent is to generate platform
specific commands to create and manage the requested virtual
resources.

This hierarchical structure solves the major challenges
posed in the previous section. The NCP agents are owned by
the PIOs and only expose high level information to their parent
NCP, such as available computing power, ingress and egress
nodes and the bandwidth/delay characteristics between them.
Internally, the agent can calculate the most efficient embedding
for its part of the sub-virtual network based on the parameters
specified by the PIO. Furthermore, peering and stacking of
NCPs reflects the varied business technical and administrative
domains. Each such NCP abstracts the internal information
of that domain and only exposes a common interface to the
outside world.

A. Inside the black box

Figure 2 shows the inner architecture of the NCP. The NCP’s
job is to orchestrate the creation and management of end-to-
end virtual networks and services for mobile operators. These
networks must be comprised of various technical domains,
typically: the access network, the core transport network
and the service back-end. NCP must completely abstract the
physical infrastructure to the service operators. This section

explains the function of the various building blocks presented
in our design of the NCP.
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Fig. 2: The architecture of the NCP.

The northbound interface gives access to the operations
provided by the NCP to the VNO and peer NCPs. It checks the
syntax of the request and performs the needed authentication.
If there are no errors with the received request, it forwards
it to the next functional block, the request handler. The
request handler is responsible for interpreting the request and
triggering the appropriate CRUD (Create,Read,Update,Delete)
operation in the NCP. There are subtle differences between
create and update requests. A virtual network create request
may require through examination and multiple negotiations
(with or without human intervention) on the plausibility and
cost of its realization within the specified constraints provided
by the VNO. Handling an existing virtual network (update
request) is easier in the sense that smaller modifications which
do not break the existing agreement may be possible. Note
that the NCP only receives requests for creation, deletion,
modification, the access credentials and the status of the virtual
network (update operation). The operation of the services
within the virtual network itself is outside the scope of the
NCP as long as it does not require any resource modification.

The resource discovery component periodically fetch infor-
mation coming from the NCP agents on available resources
in the physical network and stores it in the database. This
is to ensure that the resource manager, which implements
the request splitting function and the resource allocation
algorithm, always has up-to-date view of the physical network
status. For example, in case of creating a new virtual network,
the resource manager performs a preliminary check to see if
there are enough resources in the physical network database to
realize the request. If the request is plausible, it calculates the
end-to-end embedding of the virtual network over the physical
network based on service constraints. This may include feder-
ating the physical infrastructures across business and techno-
logical domains. The controller may also take actions based on
monitoring reports it receives. This implements fault tolerance
and service migration. The resource manager identifies the
remaining resources and maps the requested virtual network
according to the implemented resource allocation algorithm. If
the downlink NCPs choose to hide physical information details
from the manager then it must calculate a split of the virtual
network based on the partial information about the physical
infrastructure it has.



Once the resource manager has calculated the appropriate
embedding it transfers the virtual network split request through
the southbound interface to the corresponding NCP agent. The
agent then sends instructions to the respective domain O&M
system to realize the physical embedding of the requested
virtual resources. Each domain’s O&M system must be able to
create isolated virtual resources and links within their domain.
While the technology to do this has matured in the services
domain, it is still in its nascence in the access network. The
O&M interfaces must also report on the performance of each
of the virtual resources back to the monitoring component of
the NCP via the NCP agent.

The monitoring component is responsible for ensuring that
the performance of the virtual network is within the specified
parameters. This includes both the SLAs within the physical
network as provided to the operator as well as the usage of
the virtual network by the operator. As discussed in Section
III, monitoring is a challenging subject in virtual networks
and currently is an open research issue. The problem is both
business and technological. On the business aspect the problem
stems from the possible lack of trust between the physical net-
work provider’s measurements of performance and the service
operator’s view of performance. In such a case, the NCP owner
may need to act as a reliable intermediary which both the
physical infrastructure provider as well as the operator trust.
On a technological level, the current architecture of virtual
systems is not predictable. Various virtual machines may be
scheduled by the hypervisor for execution at various intervals,
thereby the instantaneous characteristics of the virtual network
can vary from one instant to another. Long term statistics can
however be reported to the NCP’s monitoring component via
the O&M of the physical network. The VNO may actively test
connections for their performance through the NCP.

V. PROTOTYPE AND IMPLEMENTATION

We have developed a prototype implementation of the
envisioned NCP architecture, including the NCP itself and
the NCP agents, as a proof of concept (see Figure 3). This
prototype also includes a Graphical User Interface (GUI) for
the VNO to define a virtual network request and to get access
information to operate it, and another GUI to perform the NCP
administration tasks.
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NCP agent 1

NCP Admin GUI

OpenStack

NCP

REST API

Cloud n

NCP agent n

OpenStack

OpenFlow 
NW

NCP agent 2

Floodlight

REST API

Fig. 3: Prototype overview.

The service provider defines the topology and properties
of the nodes and links that form the new service using the
provided GUI (see Figure 4). For example, a geographically

distributed video streaming service request is shown in Fig-
ure 5. After finishing the description of the new virtual service,
a create request is sent to NCP through the implemented
RESTful API. This request is also accessible from the NCP
administration GUI. In this GUI, the NCP administrator can
access all the received requests and check how the NCP
mapped them into the physical resources (see Figure 6).

2. Send VNet request to NCP

1. Define VNet

3. Access & Operate VNet

Fig. 4: VNO (e.g. Service provider) GUI.
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Fig. 5: Example of a video streaming service request.
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Fig. 6: NCP Administrator GUI.

Upon receiving the virtual service request description (in
an RDL [17]), the NCP identifies the candidate PIO and splits
the virtual network request into multiple domain specific sub-
requests. The splitting is based on partial information such
as, ingress and egress node, available compute power and



bandwidth / delay characteristics from the ingress to egress
nodes, which is exposed by the PIO owned NCP agent to the
NCP. The NCP takes also into account the constraints defined
in the virtual network request (e.g. geographical location of
the virtual nodes) when splitting the original request. It then
negotiates with the PIOs regarding the necessary physical
resources to embed the request. The virtual network provider
also offers a management console access for the whole virtual
network by relying on the management interfaces of the
infrastructure provider.

In our architecture, each virtual network consists of a
data plane and a control plane. The data plane is what one
commonly refers to in the context of virtual networks. By
default, a newly instantiated virtual network is just an empty
set of resources that have to be configured. However, the NCP
gives also the option to the VNO to provide certain initial
configuration for the different nodes (such as start-up scripts,
default users and passwords). For example, we provide basic
templates for initial configuration of a virtual server and a
media proxy. The video server is automatically configured
to stream a video signal to an specified media proxy. While
the media proxy is configured to listen for video streaming
signals coming from one or several video servers and forward
them to the video service clients. The control plane is also
necessary during virtual network operation for specific virtual
network management tasks. Every player maintains a control
interface hosted on dedicated management nodes for “out-
of-virtual network” access to the virtual network resources.
End-users / end-systems can dynamically connect to a vir-
tual network after successful authentication at the physical
attachment point in their local physical infrastructure provider.
The authentication occurs via an authentication channel, which
may serve one or more virtual networks, provided by their
local infrastructure provider. For this purpose, collaborating
infrastructure providers may participate in a provisioning and
management virtual network [18].

When the NCP agents finish creating the required virtual
resources, the NCP gathers the needed access information in
order to operate the new service and forwards it to the service
provider. This information is shown in the service provider
GUI. The service provider has also the option to ask the NCP
to delete the virtual service.

In our testbed we have deployed four independent comput-
ing clouds interconnected by a transport network composed
by eight OpenFlow enabled virtual switches. Each computing
cloud is managed by OpenStack. An NCP agent interfaces with
the API provided by the cloud operating system (OpenStack).
It acts as a translator for the requests sent by NCP towards
the cloud OS and for the responses sent by the cloud OS to
the NCP. In the OpenFlow network, we use the Floodlight
controller to configure forwarding tables of the OF-enabled
virtual switches (Open vSwitch) and set up isolated flows in
between virtual machines located in separate clouds. In the
same way as before, an NCP agent interfaces with the API
provided by the OF controller and translates the link requests
coming from the NCP to the controller-specific commands and

viceversa. The NCP agents make the NCP independent of the
cloud or network management system.

VI. CONCLUSION

This paper described an architecture and prototype imple-
mentation that create customized virtual networks over a phys-
ical communication network. We presented our architecture
and how some of the main challenges are addressed. We also
presented our implementation as a proof of concept, with
which we can create virtual services across geographically
distributed clouds in a quick and easy way. In the future, we
plan to expand our prototype implementation to emulate a real
mobile network: real optical links, switches, and the access
network. We also plan to use the prototype implementation to
research and develop embedding algorithms more specific to
mobile communication networks.
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